Linear axes and axis systems HX

Bridge axes HB-L

12. Bridge axes HB-L

12.1 Features of the HB-L bridge axes with linear motor

The HIWIN bridge axes with linear motor drive are flexible positioning modules with an integrated HIWIN double guide in O-arrangement. They are particularly suitable for precise positioning at high speed and high dynamics.

Linear guideway

A high-quality HIWIN double guide safely transfers forces and torques from the carriage to the axis profile. Four blocks are used per carriage, which are guided on a two parallel, high-precision profile rails. The O arrangement of the balls ensures high torque load capacity and high load ratings.

Positioning measuring systems

The distance measuring system is integrated into the inside of the axis to save space and determines the repeatability. Different measuring systems are available depending on the requirements for measuring method, interface and resolution. You can find more information on Page 156.

Optionally also with functional safety encoder.

Linear motor

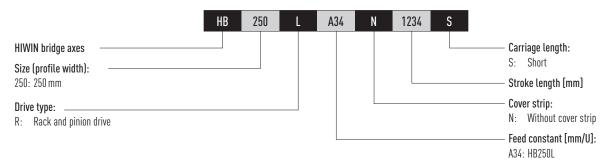
The integrated HIWIN linear motors ensure dynamic and precise positioning. Two motor sizes are available for each size in order to optimally meet the requirements for the required feed force.

Electric interface

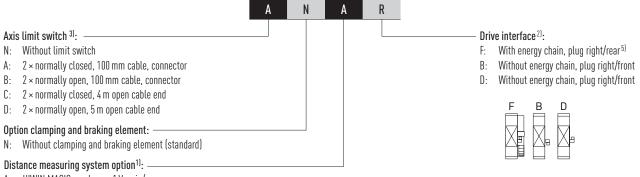
The quick-release connectors allow motor and encoder cables to be connected quickly and easily to the side of the carriage without tools. Depending on the installation situation and the desired cable routing, two different orientations of the connector are available as options.

Carriage

The carriages have additional bore holes on each mounting hole to ensure ideal, reproducible alignment of the adjacent construction. You will find the matching centring sleeves in the accessories on Page 231. A grease nipple is provided on the carriage for each lubrication point for convenient maintenance of the linear axis.


Energy chain

Generously dimensioned energy chains provide space for safely carrying the supply lines. They are extremely compact and save space when attached to the axis. For details on the orientation of the energy chain, see section 22.4 from page 225.



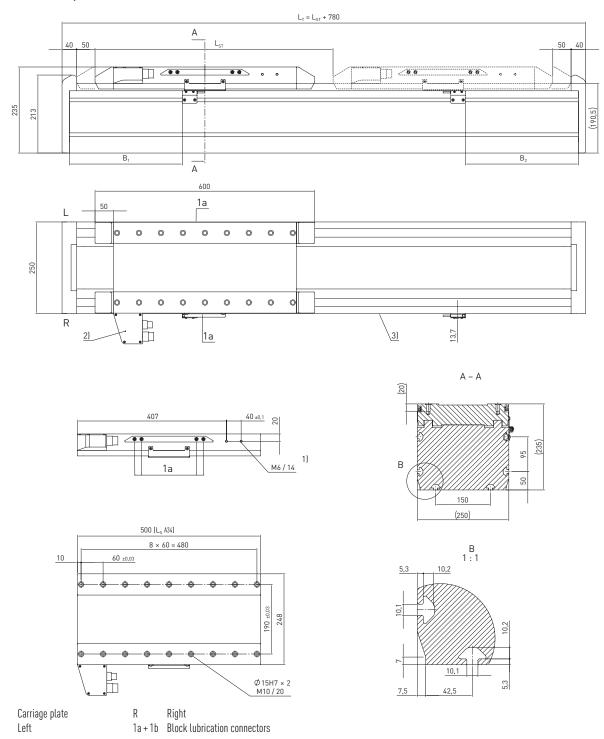
12.2 Order code for bridge axes HB-L

Continuation, order code for bridge axes HB-L

- A: HIWIN MAGIC, analogue, $1\,V_{SS}\,sin/cos$
- D: HIWIN MAGIC, digital, TTL 5 V
- R: BML-S1GO, absolute, BiSS-C, 1V_{SS} sin/cos ⁴⁾
- S: BML-S1G0, absolute, SSI⁵⁾

HX-06-0-EN-2403-K

¹⁾ More detailed information in chapter 21 from page 156 or in the "HIWIN MAGIC Distance Measuring Systems" assembly instructions".


²⁾ Details on plug alignment and position of the energy chain in section 22.4 from page 210.

³⁾ Additional reference switches on request.

⁴⁾ The position measuring system has a safety-related, analogue, incremental real-time signal.

 $^{^{\}rm 5)}$ Max. possible stroke: 5,000 mm.

12.3 Dimensions and specifications of HB250L

¹⁾ Omitted for variant with energy chain 2) Drive interface shown: Option "D"; for other series, see section 22.4 from page 225

^{3]} Internal measuring system always on the right side of the axis. The positive direction of travel depends on the selected measuring system, see section 21.2 from page 158

Table 12.1 HB250L dimensions	
Total carriage length L _c [mm]	600
Switch distance B ₁ [mm]	308.5
Switch distance B ₂ [mm]	308.5
Max. stroke length L _{ST} [mm]	5,160.0
Total length L _T [mm]	$L_{T} = L_{ST} + 780$

 $\mathsf{L}_{\mathbb{S}}$

Table 12.2 Load data		
F _{ydynmax} ^{1) 2)} [N]	11,136	
F _{zdynmax} ²⁾ [N]	11,136	
M _{xdynmax} [Nm]	1,058	
M _{ydynmax} [Nm]	1,670	
M _{zdynmax} [Nm]	1,670	
z ^{2]} [mm]	54.3	

¹⁾ Force must only act free of torque

Table 12.3 General technical data		
Repeatability ²⁾ [mm]	± 0.005	
Max. speed [m/s]	4.5	
Max. acceleration [m/s ²]	80	
Typical load capacity [kg]	350	
Maximum total length 2) 3) [mm]	5,940	
Flatness (mm/300mm) 1)	±0.03/300	
Straightness (mm/300mm) 1)	±0.03/300	
Area moment of inertia of profile cross section I _x [mm ⁴]	34.509.373	
Area moment of inertia of profile cross section I _y [mm ⁴]	80.997.444	

¹⁾ Values apply with correspondingly specified mounting surface or mounting plate

Table 12.4 Guide	
Guide type	CGH25HA
Static load rating C ₀ [N]	54,080
Dynamic load rating C _{dyn} [N]	40,500

Table 12.5 Drive		
Drive element	LMSA34	
Continuous force [N]	1,166	
Peak force [N]	3,292	

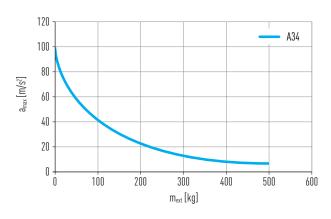


Fig. 12.1 Max. Acceleration a_{max} as a function of the external payload m_{ext}

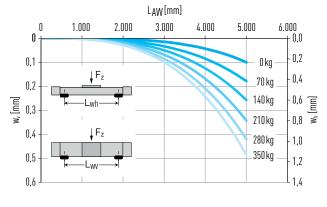


Fig. 12.2 Deflection w over unsupported axle length $L_{AW}\,$ under payload F_z

Table 12.6 Mechanical properties		
Mass of the carriage [kg]	20.2	
Mass at 0-stroke [kg]	59.94	
Mass per 1 m stroke [kg/m]	47.66	
Breakaway force O-stroke axis [N]	60	

HX-06-0-EN-2403-K 85

²⁾ Carriage upper edge – centre guide

See section 3.3.2 on page 17 (lifetime reference value)

²⁾ Dependent on stroke measuring system (chapter 17) and energy chain (section 18.4)

³⁾ Longer axes on request