WE/QW series

#### 3.4 WE/QW series

#### 3.4.1 Properties of the WE and QW series linear guideway

Wide type, for maximum torque loads. The HIWIN linear guideways of the WE series are based on proven HIWIN technology. Due to their large rail width and low overall height, they enable a compact design and high torque capacity.

The models of the QW series with SynchMotion™ technology offer all the advantages of the standard WE series. Controlled movement of the balls at a defined distance also results in improved synchronous performance, higher reliable travel speeds, extended lubrication intervals and less running noise. Since the installation dimensions of the QW blocks are identical to those of the WE blocks, they are also mounted on the WER standard rail and can thus be easily interchanged. For further information, see Page 24.

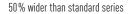
#### 3.4.2 Layout of WE/QW series

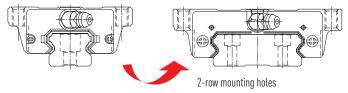
- Four-row linear guideway
- 45° contact angle
- The ball retainers prevent the balls from falling out when the block is removed
- Low installation height
- Wide linear guideway for high torque capacity
- Large mounting surface on block
- SynchMotion™ technology (QW series)



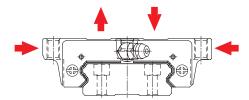
Layout of WE series

#### Advantages:


- O Compact and cost-effective design due to high torque capacity
- O High efficiency due to low friction losses




Layout of QW series

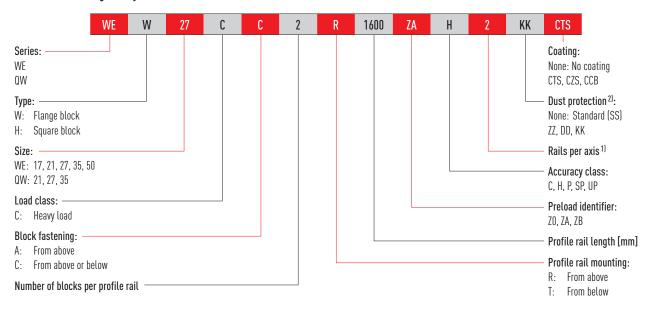

#### Additional advantages of QW series:

- o Improved synchronous performance
- Optimised for higher travel speeds
- Extended relubrication intervals
- Reduced running noise
- Higher dynamic load rating

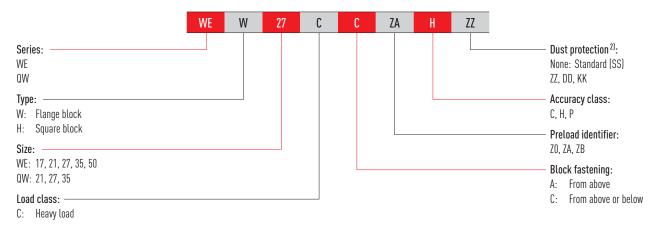




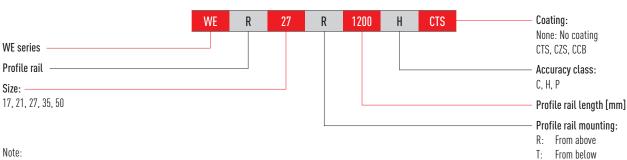
- The large-area mounting surface of the block supports the transmission of higher torques
- The 45° arrangement of the ball tracks allows for high loads from all directions







#### 3.4.3 Order codes of WE/QW series

For WE/QW linear guideways , there is a distinction made between assembled and non-assembled models. The dimensions of both models are the same. The main difference is that, in the unassembled models, blocks and profile rails can be freely interchanged. Block and profile rail can be ordered separately and mounted by the customer. Their accuracy reaches class P.


#### Order code for linear guideway (assembled)



#### Order number of block (not assembled)



#### Order number of profile rail (not assembled)



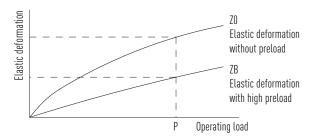
<sup>1)</sup> The number 2 is also a quantity indication, i.e. one piece of the article described above consists of one pair of rails.

No number is given for single profile rails. In the case of multi-part rails, the joint is offset as standard.

<sup>&</sup>lt;sup>2]</sup> An overview of the individual sealing systems can be found on Page 22

WE/QW series

#### 3.4.4 Block types

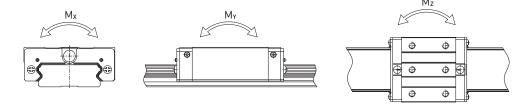

HIWIN offers block and flange block versions. Due to the larger mounting surface, flange blocks are better suited for large loads.

| Table 3.58 <b>Bloci</b> | ( types          |        |             |                                                                                                                                  |
|-------------------------|------------------|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------|
| Туре                    | Series/size      | Layout | Height [mm] | Typical applications                                                                                                             |
| Square type             | WEH-CA<br>QWH-CA |        | 17 – 50     | Automation     Handling industry     Measuring and testing technology     Semiconductor industry     Injection moulding machines |
| Flange type             | WEW-CC<br>QWW-CC |        |             | <ul> <li>Linear axes</li> </ul>                                                                                                  |

#### 3.4.5 Preload

#### Definition

Each linear guideway can be preloaded via the ball size. The curve shows that the rigidity doubles at high preload. The WE/QW series of linear guideways offers three standard preloads for different applications and conditions.




## Preload identifier

| Table 3.59 <b>Preloa</b> | d identifier   |                              |                                                                   |                                                                                                                                                                                                                   |
|--------------------------|----------------|------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Identifier               | Preload        |                              | Application                                                       | Example applications                                                                                                                                                                                              |
| ZO                       | Slight preload | 0 – 0.02 C <sub>dyn</sub>    | Constant load direction, little vibration, less accuracy required | <ul> <li>Transport technology</li> <li>Automatic packaging machines</li> <li>X-Y axis in industrial machines</li> <li>Welding machines</li> </ul>                                                                 |
| ZA                       | Medium preload | 0.03 - 0.05 C <sub>dyn</sub> | High accuracy required                                            | <ul> <li>Machining centres</li> <li>Z axes in industrial machines</li> <li>Eroding machines</li> <li>NC lathes</li> <li>Precision X-Y table</li> <li>Measuring technology</li> </ul>                              |
| ZB                       | High preload   | 0.06 - 0.08 C <sub>dyn</sub> | High rigidity required, vibration and jolting                     | <ul> <li>Machining centres</li> <li>Grinding machines</li> <li>NC lathes</li> <li>Horizontal and vertical milling machines</li> <li>Z-axis of machine tools</li> <li>High performance cutting machines</li> </ul> |



## 3.4.6 Load ratings and torques



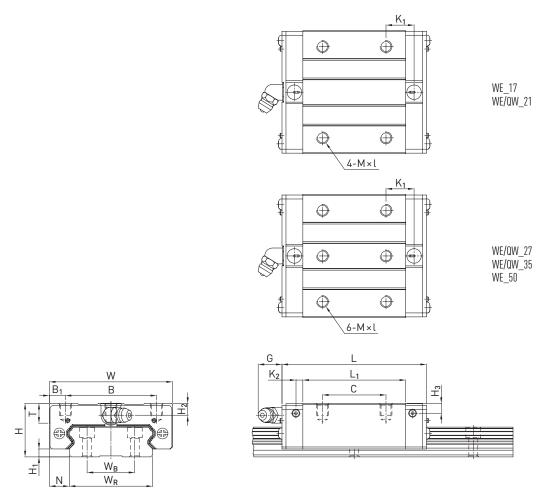
| Table 3.60 Load ratings and torques for WE/QW series |                                             |                                       |                 |                 |                 |  |  |  |  |  |  |
|------------------------------------------------------|---------------------------------------------|---------------------------------------|-----------------|-----------------|-----------------|--|--|--|--|--|--|
| Series/Size                                          | Dynamic load rating C <sub>dyn</sub> [N] 1) | Static load rating C <sub>0</sub> [N] | Static moment   | [Nm]            |                 |  |  |  |  |  |  |
|                                                      |                                             |                                       | M <sub>OX</sub> | M <sub>OY</sub> | M <sub>0Z</sub> |  |  |  |  |  |  |
| WE_17C                                               | 5,230                                       | 9,640                                 | 150             | 62              | 62              |  |  |  |  |  |  |
| WE_21C                                               | 7,210                                       | 13,700                                | 230             | 100             | 100             |  |  |  |  |  |  |
| QW_21C                                               | 9,000                                       | 12,100                                | 210             | 90              | 90              |  |  |  |  |  |  |
| WE_27C                                               | 12,400                                      | 21,600                                | 420             | 170             | 170             |  |  |  |  |  |  |
| QW_27C                                               | 16,000                                      | 22,200                                | 420             | 200             | 200             |  |  |  |  |  |  |
| WE_35C                                               | 29,800                                      | 49,400                                | 1,480           | 670             | 670             |  |  |  |  |  |  |
| QW_35C                                               | 36,800                                      | 49,200                                | 1,510           | 650             | 650             |  |  |  |  |  |  |
| WE_50C                                               | 61,520                                      | 97,000                                | 4,030           | 1,960           | 1,960           |  |  |  |  |  |  |

<sup>1)</sup> Dynamic load rating for 50,000 m travel path

## 3.4.7 Rigidity

The rigidity depends on the preload. With the formula F 3.12, the deformation can be calculated depending on the rigidity.

F 3.12

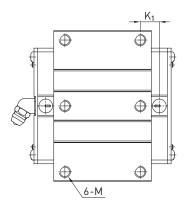

$$\delta = \frac{P}{k}$$

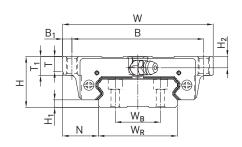
- δ Deformation [μm]
- P Operating load [N]
- k Rigidity value [N/μm]

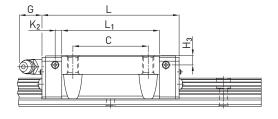
| Load type  | Series/ | Rigidity depending | Rigidity depending on the preload |     |  |  |  |  |  |  |  |
|------------|---------|--------------------|-----------------------------------|-----|--|--|--|--|--|--|--|
|            | Size    | ZO                 | ZA                                | ZB  |  |  |  |  |  |  |  |
| Heavy load | WE_17C  | 128                | 166                               | 189 |  |  |  |  |  |  |  |
|            | WE_21C  | 154                | 199                               | 228 |  |  |  |  |  |  |  |
|            | QW_21C  | 140                | 176                               | 200 |  |  |  |  |  |  |  |
|            | WE_27C  | 187                | 242                               | 276 |  |  |  |  |  |  |  |
|            | QW_27C  | 183                | 229                               | 260 |  |  |  |  |  |  |  |
|            | WE_35C  | 281                | 364                               | 416 |  |  |  |  |  |  |  |
|            | QW_35C  | 277                | 348                               | 395 |  |  |  |  |  |  |  |
|            | WE_50C  | 428                | 554                               | 633 |  |  |  |  |  |  |  |

## 3.4.8 Dimensions of the WE/QW blocks

## 3.4.8.1 WEH/QWH





| Table 3.62 <b>Di</b> i | able 3.62 <b>Dimensions of the block</b>                        |                |      |     |     |                |    |                |       |                       |                |                  |          |             |                |                |                  |                |      |
|------------------------|-----------------------------------------------------------------|----------------|------|-----|-----|----------------|----|----------------|-------|-----------------------|----------------|------------------|----------|-------------|----------------|----------------|------------------|----------------|------|
| Series/size            | /size Installation dimensions [mm] Dimensions of the block [mm] |                |      |     |     |                |    |                |       |                       |                | Load ratings [N] |          | Weight [kg] |                |                |                  |                |      |
|                        | Н                                                               | H <sub>1</sub> | N    | W   | В   | B <sub>1</sub> | С  | L <sub>1</sub> | L     | <b>K</b> <sub>1</sub> | K <sub>2</sub> | G                | M×l      | T           | H <sub>2</sub> | H <sub>3</sub> | C <sub>dyn</sub> | C <sub>0</sub> |      |
| WEH17CA                | 17                                                              | 2.5            | 8.5  | 50  | 29  | 10.5           | 15 | 35.0           | 50.6  | -                     | 3.10           | 4.9              | M4 × 5   | 6.0         | 4.0            | 3.0            | 5,230            | 9,640          | 0.12 |
| WEH21CA                | 21                                                              | 3.0            | 8.5  | 54  | 31  | 11.5           | 19 | 41.7           | 59.0  | 14.68                 | 3.65           | 12.0             | M5 × 6   | 8.0         | 4.5            | 4.2            | 7,210            | 13,700         | 0.20 |
| QWH21CA                | 21                                                              | 3.0            | 8.5  | 54  | 31  | 11.5           | 19 | 41.7           | 59.0  | 14.68                 | 3.65           | 12.0             | M5 × 6   | 8.0         | 4.5            | 4.2            | 9,000            | 12,100         | 0.20 |
| WEH27CA                | 27                                                              | 4.0            | 10.0 | 62  | 46  | 8.0            | 32 | 51.8           | 72.8  | 14.15                 | 3.50           | 12.0             | M6 × 6   | 10.0        | 6.0            | 5.0            | 12,400           | 21,600         | 0.35 |
| QWH27CA                | 27                                                              | 4.0            | 10.0 | 62  | 46  | 8.0            | 32 | 56.6           | 73.2  | 15.45                 | 3.15           | 12.0             | M6 × 6   | 10.0        | 6.0            | 5.0            | 16,000           | 22,200         | 0.35 |
| WEH35CA                | 35                                                              | 4.0            | 15.5 | 100 | 76  | 12.0           | 50 | 77.6           | 102.6 | 18.35                 | 5.25           | 12.0             | M8 × 8   | 13.0        | 8.0            | 6.5            | 29,800           | 49,400         | 1.10 |
| QWH35CA                | 35                                                              | 4.0            | 15.5 | 100 | 76  | 12.0           | 50 | 83.0           | 107.0 | 21.50                 | 5.50           | 12.0             | M8 × 8   | 13.0        | 8.0            | 6.5            | 36,800           | 49,200         | 1.10 |
| WEH50CA                | 50                                                              | 7.5            | 20.0 | 130 | 100 | 15.0           | 65 | 112.0          | 140.0 | 28.05                 | 6.00           | 12.9             | M10 × 15 | 19.5        | 12.0           | 10.5           | 61,520           | 97,000         | 3.16 |


For dimensions of the rail, see Page 88, for standard as well as optional lubrication adapter, see Page 150.

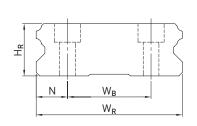


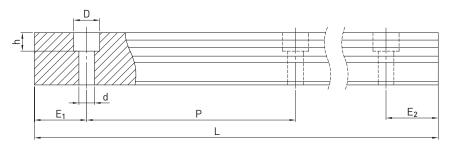
## 3.4.8.2 WEW/QWW





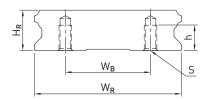


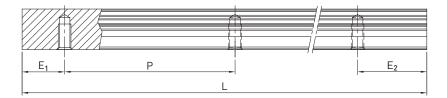

| Table 3.63 <b>Di</b> | ble 3.63 Dimensions of the block |                     |      |      |                              |                |    |                |       |                       |                |      |     |      |                | ,              |                |                  |                |             |
|----------------------|----------------------------------|---------------------|------|------|------------------------------|----------------|----|----------------|-------|-----------------------|----------------|------|-----|------|----------------|----------------|----------------|------------------|----------------|-------------|
| Series/size          |                                  | llation<br>nsions [ | mm]  | Dime | Dimensions of the block [mm] |                |    |                |       |                       |                |      |     |      |                |                |                | Load ratings [N] |                | Weight [kg] |
|                      | Н                                | H <sub>1</sub>      | N    | W    | В                            | B <sub>1</sub> | С  | L <sub>1</sub> | L     | <b>K</b> <sub>1</sub> | K <sub>2</sub> | G    | М   | T    | T <sub>1</sub> | H <sub>2</sub> | H <sub>3</sub> | C <sub>dyn</sub> | C <sub>0</sub> |             |
| WEW17CC              | 17                               | 2.5                 | 13.5 | 60   | 53                           | 3.5            | 26 | 35.0           | 50.6  | -                     | 3.10           | 4.9  | M4  | 5.3  | 6              | 4.0            | 3.0            | 5,230            | 9,640          | 0.13        |
| WEW21CC              | 21                               | 3.0                 | 15.5 | 68   | 60                           | 4.0            | 29 | 41.7           | 59.0  | 9.68                  | 3.65           | 12.0 | M5  | 7.3  | 8              | 4.5            | 4.2            | 7,210            | 13,700         | 0.23        |
| QWW21CC              | 21                               | 3.0                 | 15.5 | 68   | 60                           | 4.0            | 29 | 41.7           | 59.0  | 9.68                  | 3.65           | 12.0 | M5  | 7.3  | 8              | 4.5            | 4.2            | 9,000            | 12,100         | 0.23        |
| WEW27CC              | 27                               | 4.0                 | 19.0 | 80   | 70                           | 5.0            | 40 | 51.8           | 72.8  | 10.15                 | 3.50           | 12.0 | M6  | 8.0  | 10             | 6.0            | 5.0            | 12,400           | 21,600         | 0.43        |
| QWW27CC              | 27                               | 4.0                 | 19.0 | 80   | 70                           | 5.0            | 40 | 56.6           | 73.2  | 15.45                 | 3.15           | 12.0 | M6  | 8.0  | 10             | 6.0            | 5.0            | 16,000           | 22,200         | 0.43        |
| WEW35CC              | 35                               | 4.0                 | 25.5 | 120  | 107                          | 6.5            | 60 | 77.6           | 102.6 | 13.35                 | 5.25           | 12.0 | M8  | 11.2 | 14             | 8.0            | 6.5            | 29,800           | 49,400         | 1.26        |
| QWW35CC              | 35                               | 4.0                 | 25.5 | 120  | 107                          | 6.5            | 60 | 83.0           | 107.0 | 21.50                 | 5.50           | 12.0 | M8  | 11.2 | 14             | 8.0            | 6.5            | 36,800           | 49,200         | 1.26        |
| WEW50CC              | 50                               | 7.5                 | 36.0 | 162  | 144                          | 9.0            | 80 | 112.0          | 140.0 | 20.55                 | 6.00           | 12.9 | M10 | 14.0 | 18             | 12.0           | 10.5           | 61,520           | 97,000         | 3.71        |


For dimensions of the rail, see Page 88, for standard as well as optional lubrication adapter, see Page 150.

WE/QW series

#### 3.4.9 Dimensions of WE profile rails


## 3.4.9.1 Dimensions WER\_R





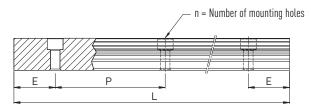

| Table 3.64 <b>Di</b> i | able 3.64 Dimensions of profile rail WER_R |                             |                |                |      |      |     |    |             |                 |             |                      |                      |        |
|------------------------|--------------------------------------------|-----------------------------|----------------|----------------|------|------|-----|----|-------------|-----------------|-------------|----------------------|----------------------|--------|
| Series/size            | Assembly screw for                         | Dimensions of the rail [mm] |                |                |      |      |     |    | Max. length | Max. length     | Min. length | E <sub>1/2</sub> min | E <sub>1/2</sub> max | Weight |
| rail [mm]              |                                            | W <sub>R</sub>              | W <sub>B</sub> | H <sub>R</sub> | D    | h    | d   | Р  | [mm]        | $E_1 = E_2[mm]$ | [mm]        | [mm]                 | [mm]                 | [kg/m] |
| WER17R                 | M4 × 12                                    | 33                          | 18             | 9.3            | 7.5  | 5.3  | 4.5 | 40 | 4,000       | 3,960           | 52          | 6                    | 34                   | 2.2    |
| WER21R                 | M4 × 16                                    | 37                          | 22             | 11.0           | 7.5  | 5.3  | 4.5 | 50 | 4,000       | 3,950           | 62          | 6                    | 44                   | 3.0    |
| WER27R                 | M4 × 20                                    | 42                          | 24             | 15.0           | 7.5  | 5.3  | 4.5 | 60 | 4,000       | 3,900           | 72          | 6                    | 54                   | 4.7    |
| WER35R                 | M6 × 25                                    | 69                          | 40             | 19.0           | 11.0 | 9.0  | 7.0 | 80 | 4,000       | 3,920           | 96          | 8                    | 72                   | 9.7    |
| WER50R                 | M8 × 30                                    | 90                          | 60             | 24.0           | 14.0 | 12.0 | 9.0 | 80 | 4,000       | 3,920           | 98          | 9                    | 71                   | 14.6   |

## 3.4.9.2 Dimensions WER\_T





| Table 3.65 <b>Dir</b> | Table 3.65 Dimensions of profile rail WER_T |                |                |    |      |    |             |                 |             |                      |                      |               |  |  |
|-----------------------|---------------------------------------------|----------------|----------------|----|------|----|-------------|-----------------|-------------|----------------------|----------------------|---------------|--|--|
| Series/size           | Dimension                                   | ons of the     | rail [mm]      |    |      |    | Max. length | Max. length     | Min. length | E <sub>1/2</sub> min | E <sub>1/2</sub> max | Weight [kg/m] |  |  |
|                       | W <sub>R</sub>                              | W <sub>B</sub> | H <sub>R</sub> | S  | h    | P  | [mm]        | $E_1 = E_2[mm]$ | [mm]        | [mm]                 | [mm]                 |               |  |  |
| WER21T                | 37                                          | 22             | 11             | M4 | 7.0  | 50 | 4,000       | 3,950           | 62          | 6                    | 44                   | 3.0           |  |  |
| WER27T                | 42                                          | 24             | 15             | M5 | 7.5  | 60 | 4,000       | 3,900           | 72          | 6                    | 54                   | 4.7           |  |  |
| WER35T                | 69                                          | 40             | 19             | M6 | 12.0 | 80 | 4,000       | 3,920           | 96          | 8                    | 72                   | 9.7           |  |  |


#### Note

- 1. The tolerance for E is +0,5 to –1 mm for standard, for joint connections 0 to –0.3 mm.
- 2. If no information is provided on the  $E_{1/2}$  dimensions, the maximum number of mounting holes is determined taking into account  $E_{1/2}$  min.
- 3. The rails are shortened to the desired length. If no information on the  $E_{1/2}$  dimensions is provided, then the rails are manufactured symmetrically.



#### 3.4.9.3 Calculation of the length of profile rails

HIWIN offers profile rains in customised lengths. To make sure the end of the profile rail does not become unstable, the value E should not exceed half the distance between the mounting holes (P). At the same time, the value  $E_{1/2}$  should be between  $E_{1/2}$  min and  $E_{1/2}$  max so that the mounting hole does not break out.



F 3.13 
$$L = (n-1) \times P + E_1 + E_2$$

- L Total length of the profile rail [mm]
- n Number of mounting holes
- P Distance between two mounting holes [mm]
- $E_{1/2}$  Distance from the centre of the last mounting hole to the end of the profile rail [mm].

## 3.4.9.4 Cover caps for mounting holes of profile rails

The cover caps are used to keep the mounting holes free of chips and dirt. The standard plastic cover caps accompany each profile rail. Optional cover caps have to be ordered separately.

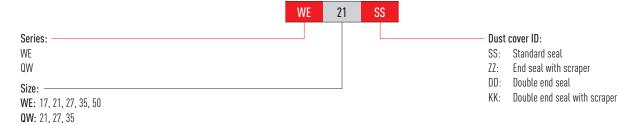


| Table 3.66 <b>Cover cap</b> | Table 3.66 Cover caps for mounting holes of profile rails |                     |          |          |               |     |  |  |  |  |  |  |  |
|-----------------------------|-----------------------------------------------------------|---------------------|----------|----------|---------------|-----|--|--|--|--|--|--|--|
| Rail                        | Screw                                                     | Article number      |          | Ø D [mm] | Height H [mm] |     |  |  |  |  |  |  |  |
|                             |                                                           | Plastic (200 units) | Brass 1) | Steel 1) |               |     |  |  |  |  |  |  |  |
| WER17R                      | M4                                                        | 5-002218            | 5-001344 | _        | 7.5           | 1.2 |  |  |  |  |  |  |  |
| WER21R                      | M4                                                        | 5-002218            | 5-001344 | _        | 7.5           | 1.2 |  |  |  |  |  |  |  |
| WER27R                      | M4                                                        | 5-002218            | 5-001344 | _        | 7.5           | 1.2 |  |  |  |  |  |  |  |
| WER35R                      | M6                                                        | 5-002221            | 5-001355 | 5-001357 | 11.0          | 2.8 |  |  |  |  |  |  |  |
| WER50R                      | M8                                                        | 5-002222            | 5-001360 | 5-001362 | 14.0          | 3.5 |  |  |  |  |  |  |  |

<sup>1)</sup> Not recommended for coated rails.

WE/QW series

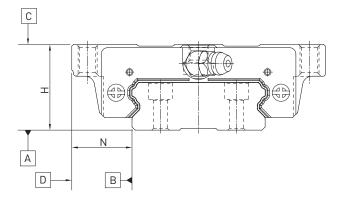
#### 3.4.10 Sealing systems


Different sealing systems are available for HIWIN blocks. You can find an overview on Page 22. The following table shows the total length of the blocks with different sealing systems. Appropriate sealing systems are available for these sizes.



| Series/size | Total length L (including screws) |       |       |       |  |  |  |  |  |  |  |
|-------------|-----------------------------------|-------|-------|-------|--|--|--|--|--|--|--|
|             | SS                                | DD    | ZZ    | KK    |  |  |  |  |  |  |  |
| WE_17C      | 50.6                              | 53.8  | 52.6  | 55.8  |  |  |  |  |  |  |  |
| WE/QW_21C   | 59.0                              | 63.0  | 61.0  | 65.0  |  |  |  |  |  |  |  |
| WE/QW_27C   | 72.8                              | 76.8  | 74.8  | 78.8  |  |  |  |  |  |  |  |
| WE/QW_35C   | 102.6                             | 106.6 | 105.6 | 109.6 |  |  |  |  |  |  |  |
| WE_50C      | 140.0                             | 145.0 | 142.0 | 147.0 |  |  |  |  |  |  |  |

#### 3.4.10.1 Designation of the seal sets


The seal sets are always shipped complete with the installation materials and include the supplemental parts for the standard seal.





## 3.4.11 Tolerances depending on the accuracy class

The WE and QW series are available in five accuracy classes according to the parallelism between block and rail, height accuracy H and width accuracy N. The selection of the accuracy class is determined by the requirements of the machine.



## 3.4.11.1 Parallelism

Parallelism of locating surfaces D and B of the block and rail and of top block surface C to mounting surface A of the rail. Ideal installation of the linear guideway and the measurement in the centre of the block are prerequisites.

| Rail length [mm] | Accuracy class |    |    |    |    |
|------------------|----------------|----|----|----|----|
|                  | С              | Н  | P  | SP | UP |
| - 100            | 12             | 7  | 3  | 2  | 2  |
| 100 - 200        | 14             | 9  | 4  | 2  | 2  |
| 200 - 300        | 15             | 10 | 5  | 3  | 2  |
| 300 - 500        | 17             | 12 | 6  | 3  | 2  |
| 500 - 700        | 20             | 13 | 7  | 4  | 2  |
| 700 – 900        | 22             | 15 | 8  | 5  | 3  |
| 900 – 1100       | 24             | 16 | 9  | 6  | 3  |
| 1100 – 1500      | 26             | 18 | 11 | 7  | 4  |
| 1500 – 1900      | 28             | 20 | 13 | 8  | 4  |
| 1900 – 2500      | 31             | 22 | 15 | 10 | 5  |
| 2500 – 3100      | 33             | 25 | 18 | 11 | 6  |
| 3100 – 3600      | 36             | 27 | 20 | 14 | 7  |
| 3600 – 4000      | 37             | 28 | 21 | 15 | 7  |

WE/QW series

#### 3.4.11.2 Accuracy - height and width

#### Height tolerance of H

Permissible absolute dimension deviation of height H, measured between the centre of bolting surface C and rail underside A, with any position of the block on the rail.

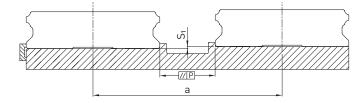
#### Height variance of H

Permissible deviation of height H between several blocks on one rail, measured at the same position of the rail.

#### Width tolerance of N

Permissible absolute dimension deviation of width N, measured between the centre of bolting surfaces D and B, with any position of the block on the rail.

#### Width variance of N


Permissible deviation of width N between several blocks on one rail, measured at the same position of the rail.

| Table 3.69 Tolerances of width and height |                      |                                                 |                                                 |                      |                     |  |  |  |  |  |  |  |
|-------------------------------------------|----------------------|-------------------------------------------------|-------------------------------------------------|----------------------|---------------------|--|--|--|--|--|--|--|
| Series/size                               | Accuracy class       | Height tolerance of H                           | Width tolerance of N                            | Height variance of H | Width variance of N |  |  |  |  |  |  |  |
| WE_17, 21                                 | C (Normal)           | ± 0.1                                           | ± 0.1                                           | 0.02                 | 0.02                |  |  |  |  |  |  |  |
| QW_21                                     | H (high)             | ± 0.03                                          | ± 0.03                                          | 0.01                 | 0.01                |  |  |  |  |  |  |  |
|                                           | P (precision)        | 0/- 0.03 <sup>1)</sup><br>± 0.015 <sup>2)</sup> | 0/- 0.03 <sup>1)</sup><br>± 0.015 <sup>2)</sup> | 0.006                | 0.006               |  |  |  |  |  |  |  |
|                                           | SP (super precision) | 0/- 0.015                                       | 0/- 0.015                                       | 0.004                | 0.004               |  |  |  |  |  |  |  |
|                                           | UP (ultra precision) | 0/- 0.008                                       | 0/-0.008                                        | 0.003                | 0.003               |  |  |  |  |  |  |  |
| WE_27, 35                                 | C (Normal)           | ± 0.1                                           | ± 0.1                                           | 0.02                 | 0.03                |  |  |  |  |  |  |  |
| QW_27, 35                                 | H (high)             | ± 0.04                                          | ± 0.04                                          | 0.015                | 0.015               |  |  |  |  |  |  |  |
|                                           | P (precision)        | 0/- 0.04 <sup>1)</sup><br>± 0.02 <sup>2)</sup>  | 0/- 0.04 <sup>1)</sup><br>± 0.02 <sup>2)</sup>  | 0.007                | 0.007               |  |  |  |  |  |  |  |
|                                           | SP (super precision) | 0/- 0.02                                        | 0/- 0.02                                        | 0.005                | 0.005               |  |  |  |  |  |  |  |
|                                           | UP (ultra precision) | 0/- 0.01                                        | 0/- 0.01                                        | 0.003                | 0.003               |  |  |  |  |  |  |  |
| WE_50                                     | C (Normal)           | ± 0.1                                           | ± 0.1                                           | 0.03                 | 0.03                |  |  |  |  |  |  |  |
|                                           | H (high)             | ± 0.05                                          | ± 0.05                                          | 0.02                 | 0.02                |  |  |  |  |  |  |  |
|                                           | P (precision)        | 0/- 0.05 <sup>1)</sup><br>± 0.025 <sup>2)</sup> | 0/- 0.05 <sup>1)</sup><br>± 0.025 <sup>2)</sup> | 0.01                 | 0.01                |  |  |  |  |  |  |  |
|                                           | SP (super precision) | 0/- 0.03                                        | 0/- 0.03                                        | 0.01                 | 0.01                |  |  |  |  |  |  |  |
|                                           | UP (ultra precision) | 0/- 0.02                                        | 0/- 0.02                                        | 0.01                 | 0.01                |  |  |  |  |  |  |  |

Unit: mm

## 3.4.11.3 Permissible tolerances of the mounting surface

Once the requirements for the accuracy of the mounting surfaces are met, the high accuracy, rigidity and service life of the WE and QW series linear guideways are achieved.



<sup>1)</sup> Assembled linear guideway

<sup>&</sup>lt;sup>2)</sup> Unassembled linear guideway

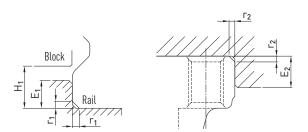


## Tolerance of parallelism of reference surface (P):

| Table 3.70 Maximum tolerance for parallelism (P) |               |    |    |  |  |
|--------------------------------------------------|---------------|----|----|--|--|
| Series/Size                                      | Preload class |    |    |  |  |
|                                                  | ZO            | ZA | ZB |  |  |
| WE_17                                            | 20            | 15 | 9  |  |  |
| WE/QW_21                                         | 25            | 18 | 9  |  |  |
| WE/QW_27                                         | 25            | 20 | 13 |  |  |
| WE/QW_35                                         | 30            | 22 | 20 |  |  |
| WE_50                                            | 40            | 30 | 27 |  |  |
| Unit: µm                                         |               |    |    |  |  |

## Tolerance of height of reference surface $(S_1)$ :

F 3.14


$$S_1 = a \times K$$

- S<sub>1</sub> Maximum height tolerance [mm]
- a Distance between rails [mm]
- K Coefficient of height tolerance

| Table 3.71 Coefficient of height tolerance (K) |                        |                        |                        |  |  |
|------------------------------------------------|------------------------|------------------------|------------------------|--|--|
| Series/Size                                    | Preload class          |                        |                        |  |  |
|                                                | <b>Z</b> 0             | ZA                     | ZB                     |  |  |
| WE_17                                          | 1.3 × 10 <sup>-4</sup> | 0.4 × 10 <sup>-4</sup> | -                      |  |  |
| WE/QW_21                                       | 2.6 × 10 <sup>-4</sup> | 1.7 × 10 <sup>-4</sup> | 0.9 × 10 <sup>-4</sup> |  |  |
| WE/QW_27                                       | 2.6 × 10 <sup>-4</sup> | 1.7 × 10 <sup>-4</sup> | $0.9 \times 10^{-4}$   |  |  |
| WE/QW_35                                       | 2.6 × 10 <sup>-4</sup> | 1.7 × 10 <sup>-4</sup> | 1.4 × 10 <sup>-4</sup> |  |  |
| WE_50                                          | 3.4 × 10 <sup>-4</sup> | 2.2 × 10 <sup>-4</sup> | 1.8 × 10 <sup>-4</sup> |  |  |

## 3.4.12 Shoulder heights and edge roundings

Inaccurate shoulder heights and edge roundings of mounting surfaces impair accuracy and may conflict with the block or rail profile. The following shoulder heights and edge profiles must be observed to avoid assembly problems.



| Table 3.72 Shoulder heights and edge roundings |                                     |                                     |                                                              |                                                               |                                             |  |  |
|------------------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|--|--|
| Series/Size                                    | Max. radius of edges r <sub>1</sub> | Max. radius of edges r <sub>2</sub> | Shoulder height of the reference edge of rail E <sub>1</sub> | Shoulder height of the reference edge of block E <sub>2</sub> | Clearance height under block H <sub>1</sub> |  |  |
| WE_17                                          | 0.4                                 | 0.4                                 | 2.0                                                          | 4.0                                                           | 2.5                                         |  |  |
| WE/QW_21                                       | 0.4                                 | 0.4                                 | 2.5                                                          | 5.0                                                           | 3.0                                         |  |  |
| WE/QW_27                                       | 0.5                                 | 0.5                                 | 3.0                                                          | 7.0                                                           | 4.0                                         |  |  |
| WE/QW_35                                       | 0.5                                 | 0.5                                 | 3.5                                                          | 10.0                                                          | 4.0                                         |  |  |
| WE_50                                          | 0.8                                 | 0.8                                 | 6.0                                                          | 10.0                                                          | 7.5                                         |  |  |